Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic Caldicellulosiruptor Species.

Identifieur interne : 000A74 ( Main/Exploration ); précédent : 000A73; suivant : 000A75

Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic Caldicellulosiruptor Species.

Auteurs : Laura L. Lee [États-Unis] ; William S. Hart [États-Unis] ; Vladimir V. Lunin [États-Unis] ; Markus Alahuhta [États-Unis] ; Yannick J. Bomble [États-Unis] ; Michael E. Himmel [États-Unis] ; Sara E. Blumer-Schuette [États-Unis] ; Michael W W. Adams [États-Unis] ; Robert M. Kelly [États-Unis]

Source :

RBID : pubmed:30478233

Descripteurs français

English descriptors

Abstract

Genomes of extremely thermophilic Caldicellulosiruptor species encode novel cellulose binding proteins, called tāpirins, located proximate to the type IV pilus locus. The C-terminal domain of Caldicellulosiruptor kronotskyensis tāpirin 0844 (Calkro_0844) is structurally unique and has a cellulose binding affinity akin to that seen with family 3 carbohydrate binding modules (CBM3s). Here, full-length and C-terminal versions of tāpirins from Caldicellulosiruptor bescii (Athe_1870), Caldicellulosiruptor hydrothermalis (Calhy_0908), Caldicellulosiruptor kristjanssonii (Calkr_0826), and Caldicellulosiruptor naganoensis (NA10_0869) were produced recombinantly in Escherichia coli and compared to Calkro_0844. All five tāpirins bound to microcrystalline cellulose, switchgrass, poplar, and filter paper but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844, and NA10_0869 (from strongly cellulolytic species). Perhaps this relates to their specific needs to capture glucans released from lignocellulose by cellulases produced in Caldicellulosiruptor communities. Calkro_0844 and NA10_0869 share a higher degree of amino acid sequence identity (>80% identity) with each other than either does with Athe_1870 (∼50%). The levels of amino acid sequence identity of Calhy_0908 and Calkr_0826 to Calkro_0844 were only 16% and 36%, respectively, although the three-dimensional structures of their C-terminal binding regions were closely related. Unlike the parent strain, C. bescii mutants lacking the tāpirin genes did not bind to cellulose following short-term incubation, suggesting a role in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tāpirins likely help scavenge carbohydrates from lignocellulose to support growth and survival of Caldicellulosiruptor species.IMPORTANCE The mechanisms by which microorganisms attach to and degrade lignocellulose are important to understand if effective approaches for conversion of plant biomass into fuels and chemicals are to be developed. Caldicellulosiruptor species grow on carbohydrates from lignocellulose at elevated temperatures and have biotechnological significance for that reason. Novel cellulose binding proteins, called tāpirins, are involved in the way that Caldicellulosiruptor species interact with microcrystalline cellulose, and additional information about the diversity of these proteins across the genus, including binding affinity and three-dimensional structural comparisons, is provided here.

DOI: 10.1128/AEM.01983-18
PubMed: 30478233
PubMed Central: PMC6344629


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic
<i>Caldicellulosiruptor</i>
Species.</title>
<author>
<name sortKey="Lee, Laura L" sort="Lee, Laura L" uniqKey="Lee L" first="Laura L" last="Lee">Laura L. Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hart, William S" sort="Hart, William S" uniqKey="Hart W" first="William S" last="Hart">William S. Hart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lunin, Vladimir V" sort="Lunin, Vladimir V" uniqKey="Lunin V" first="Vladimir V" last="Lunin">Vladimir V. Lunin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alahuhta, Markus" sort="Alahuhta, Markus" uniqKey="Alahuhta M" first="Markus" last="Alahuhta">Markus Alahuhta</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bomble, Yannick J" sort="Bomble, Yannick J" uniqKey="Bomble Y" first="Yannick J" last="Bomble">Yannick J. Bomble</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Himmel, Michael E" sort="Himmel, Michael E" uniqKey="Himmel M" first="Michael E" last="Himmel">Michael E. Himmel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blumer Schuette, Sara E" sort="Blumer Schuette, Sara E" uniqKey="Blumer Schuette S" first="Sara E" last="Blumer-Schuette">Sara E. Blumer-Schuette</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Adams, Michael W W" sort="Adams, Michael W W" uniqKey="Adams M" first="Michael W W" last="Adams">Michael W W. Adams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kelly, Robert M" sort="Kelly, Robert M" uniqKey="Kelly R" first="Robert M" last="Kelly">Robert M. Kelly</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA rmkelly@ncsu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30478233</idno>
<idno type="pmid">30478233</idno>
<idno type="doi">10.1128/AEM.01983-18</idno>
<idno type="pmc">PMC6344629</idno>
<idno type="wicri:Area/Main/Corpus">000B58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B58</idno>
<idno type="wicri:Area/Main/Curation">000B58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B58</idno>
<idno type="wicri:Area/Main/Exploration">000B58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic
<i>Caldicellulosiruptor</i>
Species.</title>
<author>
<name sortKey="Lee, Laura L" sort="Lee, Laura L" uniqKey="Lee L" first="Laura L" last="Lee">Laura L. Lee</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hart, William S" sort="Hart, William S" uniqKey="Hart W" first="William S" last="Hart">William S. Hart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lunin, Vladimir V" sort="Lunin, Vladimir V" uniqKey="Lunin V" first="Vladimir V" last="Lunin">Vladimir V. Lunin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alahuhta, Markus" sort="Alahuhta, Markus" uniqKey="Alahuhta M" first="Markus" last="Alahuhta">Markus Alahuhta</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bomble, Yannick J" sort="Bomble, Yannick J" uniqKey="Bomble Y" first="Yannick J" last="Bomble">Yannick J. Bomble</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Himmel, Michael E" sort="Himmel, Michael E" uniqKey="Himmel M" first="Michael E" last="Himmel">Michael E. Himmel</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blumer Schuette, Sara E" sort="Blumer Schuette, Sara E" uniqKey="Blumer Schuette S" first="Sara E" last="Blumer-Schuette">Sara E. Blumer-Schuette</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Adams, Michael W W" sort="Adams, Michael W W" uniqKey="Adams M" first="Michael W W" last="Adams">Michael W W. Adams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kelly, Robert M" sort="Kelly, Robert M" uniqKey="Kelly R" first="Robert M" last="Kelly">Robert M. Kelly</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA rmkelly@ncsu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Carrier Proteins (chemistry)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Cellulose (chemistry)</term>
<term>Cellulose (metabolism)</term>
<term>Firmicutes (chemistry)</term>
<term>Firmicutes (genetics)</term>
<term>Firmicutes (metabolism)</term>
<term>Genome, Bacterial (MeSH)</term>
<term>Hot Springs (microbiology)</term>
<term>Hot Temperature (MeSH)</term>
<term>Protein Domains (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellulose (composition chimique)</term>
<term>Cellulose (métabolisme)</term>
<term>Domaines protéiques (MeSH)</term>
<term>Firmicutes (composition chimique)</term>
<term>Firmicutes (génétique)</term>
<term>Firmicutes (métabolisme)</term>
<term>Génome bactérien (MeSH)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines de transport (composition chimique)</term>
<term>Protéines de transport (génétique)</term>
<term>Protéines de transport (métabolisme)</term>
<term>Sources thermales (microbiologie)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Température élevée (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Carrier Proteins</term>
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Carrier Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Carrier Proteins</term>
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Firmicutes</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Cellulose</term>
<term>Firmicutes</term>
<term>Protéines bactériennes</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Firmicutes</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Firmicutes</term>
<term>Protéines bactériennes</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Firmicutes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Sources thermales</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Hot Springs</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulose</term>
<term>Firmicutes</term>
<term>Protéines bactériennes</term>
<term>Protéines de transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Genome, Bacterial</term>
<term>Hot Temperature</term>
<term>Protein Domains</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Domaines protéiques</term>
<term>Génome bactérien</term>
<term>Séquence d'acides aminés</term>
<term>Température élevée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Genomes of extremely thermophilic
<i>Caldicellulosiruptor</i>
species encode novel cellulose binding proteins, called tāpirins, located proximate to the type IV pilus locus. The C-terminal domain of
<i>Caldicellulosiruptor kronotskyensis</i>
tāpirin 0844 (Calkro_0844) is structurally unique and has a cellulose binding affinity akin to that seen with family 3 carbohydrate binding modules (CBM3s). Here, full-length and C-terminal versions of tāpirins from
<i>Caldicellulosiruptor bescii</i>
(Athe_1870),
<i>Caldicellulosiruptor hydrothermalis</i>
(Calhy_0908),
<i>Caldicellulosiruptor kristjanssonii</i>
(Calkr_0826), and
<i>Caldicellulosiruptor naganoensis</i>
(NA10_0869) were produced recombinantly in
<i>Escherichia coli</i>
and compared to Calkro_0844. All five tāpirins bound to microcrystalline cellulose, switchgrass, poplar, and filter paper but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844, and NA10_0869 (from strongly cellulolytic species). Perhaps this relates to their specific needs to capture glucans released from lignocellulose by cellulases produced in
<i>Caldicellulosiruptor</i>
communities. Calkro_0844 and NA10_0869 share a higher degree of amino acid sequence identity (>80% identity) with each other than either does with Athe_1870 (∼50%). The levels of amino acid sequence identity of Calhy_0908 and Calkr_0826 to Calkro_0844 were only 16% and 36%, respectively, although the three-dimensional structures of their C-terminal binding regions were closely related. Unlike the parent strain,
<i>C. bescii</i>
mutants lacking the tāpirin genes did not bind to cellulose following short-term incubation, suggesting a role in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tāpirins likely help scavenge carbohydrates from lignocellulose to support growth and survival of
<i>Caldicellulosiruptor</i>
species.
<b>IMPORTANCE</b>
The mechanisms by which microorganisms attach to and degrade lignocellulose are important to understand if effective approaches for conversion of plant biomass into fuels and chemicals are to be developed.
<i>Caldicellulosiruptor</i>
species grow on carbohydrates from lignocellulose at elevated temperatures and have biotechnological significance for that reason. Novel cellulose binding proteins, called tāpirins, are involved in the way that
<i>Caldicellulosiruptor</i>
species interact with microcrystalline cellulose, and additional information about the diversity of these proteins across the genus, including binding affinity and three-dimensional structural comparisons, is provided here.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30478233</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>01</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>85</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>02</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic
<i>Caldicellulosiruptor</i>
Species.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01983-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.01983-18</ELocationID>
<Abstract>
<AbstractText>Genomes of extremely thermophilic
<i>Caldicellulosiruptor</i>
species encode novel cellulose binding proteins, called tāpirins, located proximate to the type IV pilus locus. The C-terminal domain of
<i>Caldicellulosiruptor kronotskyensis</i>
tāpirin 0844 (Calkro_0844) is structurally unique and has a cellulose binding affinity akin to that seen with family 3 carbohydrate binding modules (CBM3s). Here, full-length and C-terminal versions of tāpirins from
<i>Caldicellulosiruptor bescii</i>
(Athe_1870),
<i>Caldicellulosiruptor hydrothermalis</i>
(Calhy_0908),
<i>Caldicellulosiruptor kristjanssonii</i>
(Calkr_0826), and
<i>Caldicellulosiruptor naganoensis</i>
(NA10_0869) were produced recombinantly in
<i>Escherichia coli</i>
and compared to Calkro_0844. All five tāpirins bound to microcrystalline cellulose, switchgrass, poplar, and filter paper but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844, and NA10_0869 (from strongly cellulolytic species). Perhaps this relates to their specific needs to capture glucans released from lignocellulose by cellulases produced in
<i>Caldicellulosiruptor</i>
communities. Calkro_0844 and NA10_0869 share a higher degree of amino acid sequence identity (>80% identity) with each other than either does with Athe_1870 (∼50%). The levels of amino acid sequence identity of Calhy_0908 and Calkr_0826 to Calkro_0844 were only 16% and 36%, respectively, although the three-dimensional structures of their C-terminal binding regions were closely related. Unlike the parent strain,
<i>C. bescii</i>
mutants lacking the tāpirin genes did not bind to cellulose following short-term incubation, suggesting a role in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tāpirins likely help scavenge carbohydrates from lignocellulose to support growth and survival of
<i>Caldicellulosiruptor</i>
species.
<b>IMPORTANCE</b>
The mechanisms by which microorganisms attach to and degrade lignocellulose are important to understand if effective approaches for conversion of plant biomass into fuels and chemicals are to be developed.
<i>Caldicellulosiruptor</i>
species grow on carbohydrates from lignocellulose at elevated temperatures and have biotechnological significance for that reason. Novel cellulose binding proteins, called tāpirins, are involved in the way that
<i>Caldicellulosiruptor</i>
species interact with microcrystalline cellulose, and additional information about the diversity of these proteins across the genus, including binding affinity and three-dimensional structural comparisons, is provided here.</AbstractText>
<CopyrightInformation>Copyright © 2019 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Laura L</ForeName>
<Initials>LL</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hart</LastName>
<ForeName>William S</ForeName>
<Initials>WS</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lunin</LastName>
<ForeName>Vladimir V</ForeName>
<Initials>VV</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alahuhta</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bomble</LastName>
<ForeName>Yannick J</ForeName>
<Initials>YJ</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Himmel</LastName>
<ForeName>Michael E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blumer-Schuette</LastName>
<ForeName>Sara E</ForeName>
<Initials>SE</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>Michael W W</ForeName>
<Initials>MWW</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kelly</LastName>
<ForeName>Robert M</ForeName>
<Initials>RM</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA rmkelly@ncsu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 GM008776</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000068536" MajorTopicYN="N">Firmicutes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016680" MajorTopicYN="N">Genome, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045482" MajorTopicYN="N">Hot Springs</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006358" MajorTopicYN="N">Hot Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Caldicellulosiruptor </Keyword>
<Keyword MajorTopicYN="Y">cellulose binding protein</Keyword>
<Keyword MajorTopicYN="Y">lignocellulose</Keyword>
<Keyword MajorTopicYN="Y">tāpirin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>08</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>11</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30478233</ArticleId>
<ArticleId IdType="pii">AEM.01983-18</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.01983-18</ArticleId>
<ArticleId IdType="pmc">PMC6344629</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2013;4:2777</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24231803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Langmuir. 2007 Dec 4;23(25):12535-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17988165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2014 Nov;196(21):3784-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25157080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2011 Sep;91(6):1477-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21785931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rec. 2008;8(6):364-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19107866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22505256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Apr 20;9(1):1579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29679008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Oct 09;7(1):142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25317205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2012 Feb;78(3):768-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22138994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Dec 20;342(6165):1513-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24357319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2008 Jun;19(3):210-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18524567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Aug 29;7(1):9622</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28851921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1981 Mar 12;290(5802):107-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28769131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):22-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2013 Jan;40(1):41-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23149625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Dec 16;8(12):e84172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24358340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Jul;185(13):3888-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12813083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Apr;77(7):2232-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21317259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21460441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2011 Jul;108(7):1559-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21337327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Jun 30;82(14):4421-4428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1998 Feb;144 ( Pt 2):457-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9493383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2017 Dec 1;83(24):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28986379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Mar 25;291(13):6732-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26814128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Mar;81(6):2006-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25576604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2015 Jun;81(11):3823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25819971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2018 Apr 16;84(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29475869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 23;10(3):e0119508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25799047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Aug;194(15):4015-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22636774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2011 Dec 2;10(12):5302-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18440982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2009 May;6(5):343-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19363495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2017 May;114(5):945-950</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28019666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2011 Nov;38(11):1867-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21604181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Expr Purif. 2005 May;41(1):207-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15915565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Apr 24;290(17):10645-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720489</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
<li>Colorado</li>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Lee, Laura L" sort="Lee, Laura L" uniqKey="Lee L" first="Laura L" last="Lee">Laura L. Lee</name>
</region>
<name sortKey="Adams, Michael W W" sort="Adams, Michael W W" uniqKey="Adams M" first="Michael W W" last="Adams">Michael W W. Adams</name>
<name sortKey="Alahuhta, Markus" sort="Alahuhta, Markus" uniqKey="Alahuhta M" first="Markus" last="Alahuhta">Markus Alahuhta</name>
<name sortKey="Blumer Schuette, Sara E" sort="Blumer Schuette, Sara E" uniqKey="Blumer Schuette S" first="Sara E" last="Blumer-Schuette">Sara E. Blumer-Schuette</name>
<name sortKey="Bomble, Yannick J" sort="Bomble, Yannick J" uniqKey="Bomble Y" first="Yannick J" last="Bomble">Yannick J. Bomble</name>
<name sortKey="Hart, William S" sort="Hart, William S" uniqKey="Hart W" first="William S" last="Hart">William S. Hart</name>
<name sortKey="Himmel, Michael E" sort="Himmel, Michael E" uniqKey="Himmel M" first="Michael E" last="Himmel">Michael E. Himmel</name>
<name sortKey="Kelly, Robert M" sort="Kelly, Robert M" uniqKey="Kelly R" first="Robert M" last="Kelly">Robert M. Kelly</name>
<name sortKey="Lunin, Vladimir V" sort="Lunin, Vladimir V" uniqKey="Lunin V" first="Vladimir V" last="Lunin">Vladimir V. Lunin</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30478233
   |texte=   Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic Caldicellulosiruptor Species.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30478233" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020